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 I. INTRODUCTION 

As quantum analogs of classical random walks, quan-

tum walks have drawn great attention in recent years. 

One typical feature of a quantum walk is that it usually 

has a ballistic spread speed compared to the diffusion 

spread speed of a classical random walk. Quantum 

walks have found wide application in quantum infor-

mation and quantum computation. Due to the quantum 

interference effects, quantum walks greatly outperform 

random walks at certain computational tasks, and 

moreover it has turned out that quantum walks consti-

tute universal models of quantum computation. 

From a perspective of mathematics, a time 

-homogeneous quantum walk is usually described by a 

unitary operator on a complex Hilbert space and a unit 

vector in the same Hilbert space. Conventionally, the 

unitary operator is known as the walk's evolution oper-

ator, while the unit vector is referred to as its initial 

state. Given its initial state, a quantum walk is then 

completely determined by its evolution operator. 

In [4], the authors introduced a model of 

time-inhomogeneous quantum walk in terms of quan-

tum Bernoulli noises and showed that its evolution 

operators are unitary involutions (self-adjoint unitary 

operators). On the other hand, in their recent paper [2], 

Segawa and Suzuki have proven a spectral mapping 

theorem for a class of abstract quantum walks. 

In this paper, we consider a class of unitary oper-

ators associated with the evolution operators of the 

quantum walk introduced in [4], and, by using Segawa 

and Suzuki's spectral mapping theorem mentioned 

above, we obtain their spectra. 

 

II. PRELIMINARIES 

In this section, we first recall some necessary notions 

and facts about quantum Bernoulli noises, 

and then we describe the Segawa and Suzuki's spectral 

mapping theorem.  

          2.1. Quantum Bernoulli noises 

 

Let   be the set of all functions  : 1,  1  ,
 

and  
0n n




the sequence
 

of canonical projections on 

  . Let F  be the  -field on   generated by the 

sequence  
0n n




, and  
0n n

p


a given sequence of 

positive numbers with the property that 0 1np 
 

for all 0n . Then there exists a unique probability 

measure P on the measurable space  ,  F  such 

that 

for   ,  1,  1 1j jn N j k     , with 

i jn n  when i j and 1k  . Thus one has a 

probability measure space  ,  F, P , which is re-

ferred to as the Bernoulli space and complex-valued 

random variables on it are known as Bernoulli func-

tionals. 

Let  
0n n

Z Z


  be the sequence of Bernoulli 

functionals generated by the sequence, 

namely 

      

where 1n nq p  . Clearly  
0n n

Z Z


 is a sequence of 

independent random variables on the probability 

measure space  ,  F, P . Let  be the space of 

square integrable Bernoulli functionals, namely 

  
 2 ,  F ,  PL   

We denote by  ,    the usual inner product of the 

space , and by     the corresponding norm. It is 

known that Z has the chaotic representation property, 

which implies that  |Z   
 

forms an or-

thonormal basis (ONB) for , which is known as the 
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canonical ONB for .  Here 1Z   and 

,   ,   .j
j

Z Z


 


    
 

Clearly  is infinite-dimensional as a complex Hil-

bert space and, for 0,n 
 n n

Z Z
 

is a member of 

the canonical ONB for . 

It can be shown that [3], for each 0k  , there 

exists a bounded operator
k on  such that 

   \1 ,   1 1 ,   ,k k k kZ k Z Z k Z      

        

wher k

 denotes the adjoint of k ,  \ \k k  ,  

and  1 k  the indicator of   as a subset of . 

The operators k and k

 are usually known as 

the annihilation and creation operators acting on Ber-

noulli functionals, respectively. And the family 

 
0

,  k k k




  is referred to as quantum Bernoulli nois-

es. 

A typical property of quantum Bernoulli noises is 

that they satisfy the canonical anti-commutation rela-

tions (CAR) in equal-time [3]. More specifically, for 

,  0 ,k l 
 

it holds true that    
 

 

 

 ,  ,  ,   k l l k k l l k k l l k k l                        

and 

     0,   ,k k k k k k k k I               

where I  is the identity operator on  . 

 

2.2. Segawa-Suzuki spectral mapping theorem 

Definition 2.1.  Let   be a Hilbert space.  A  

unitary operator S on is called a unitary involution 

on   if it is self-adjoint. 

Clearly, a bounded operator S on a Hilbert space 

  is a unitary involution if and only if it satisfies 

S S   and 
2S I . Here I  means the identity 

operator on  . If P  is a projection operator on 

Hilbert space  , then 2P I  is a unitary involu-

tion. 

Definition 2.2. Let ,   KH be Hilbert spaces. A 

bounded operato :A H K is called a coisometry 

form  to K if it satisfies 
kAA I  . Here kI

 

means the identity operator on K  . 

Let A  be a coisometry form Hilbert space   

to Hilbert space K . Then it can be shown that 
*2 HA A I

 
is a unitary involution on  . By con-

vention, we usually use the simpler 2 1A A   to 

mean 
*2 HA A I . 

Lemma 2.1. [2] Let ,   KH
 

be complex Hilbert 

spaces. Suppose that S  is a unitary involution on   

and Ad  is a coisometry form   to K . Write 

 2 1A AU S d d   and 
A AT d Sd . Then 

it holds true that 

   
        1 1 1 ,

M M
U T       

 

   
        1 1 1 ,

M M

p pU T       
 

where  dim ker ker 1AM d S       
and   

is the Joukowsky transform given by  

               
 

1

2

x x
x


 . 

Moreover, for    ,p U  one has 

 
  

 

dim ker ,    1;
dim ker

dim ker 1 ,   = 1,

T
U

T M

  




   
  

 

 

Under the conditions in

 

Lemma 2.1, the operator 

 2 1A AU S d d 
 

is called the abstract evolution 

associated with S  and Ad , while the operator 

A AT d Sd  is called the discriminant of U . As is 

seen, Lemma 2.1 actually gives a spectral mapping 

theorem between an abstract evolution and its discri-

minant. 

 

III. MAIN RESULTS 

In this section, we state and prove our main results. We 

first make some necessary preparations. 

Let  2 ,  l be the space of square summable 

functions defined on and valued in , namely 

   
22 ,  : |

x

x

l x




 
     
 


 

where     means the norm of . Then  

 2 ,  l remains a complex Hilbert space, whose 

inner product 
 2 , 

 ,  
l

 
 

is given by 

 
     2

2

, 
,  ,  ,   ,  ,  ,

x

l
x

x x l




      

where  ,    denotes the inner product of  as indi-

cated in Subsection 2.1. By convention, we denote by 
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 2 , 
  

l
 the norm induced by 

 2 , 
 ,  

l
  . As 

usual, a vector  2 ,  l  is called normalized if 

 2 , 
1

l
  . For z  and u , we use 

, uz  

to mean the -valued function on  given by 

, u

,    x=z;

0,    x ,  x z.
z

u



 

 
                        

 

  

Clearly,  2

, u ,  z l   and 
 2, u , z l

u   
 

for all z  and u . 

Lemma 3.1. [4] For each nonnegative integer 0k  , 

there exists a unitary involution kU on   2 ,  l
 

such that 

        * 21 1 ,   x ,  l ,  .k k kU x x x         

 

In [4], actually by using the operators 

 | 0kU k  as the evolution operators, the authors 

introduced a model of time-inhomogeneous quantum 

walk and showed its basic properties. In the following, 

we analyze a class of unitary operators associated with 

 | 0kU k  . 

Proposition 3.2.  Define a mapping  2: ,  P l  

 as    20 ,   l ,  .P   Then P  is 

coisometry from  2 ,  l  to , and moreover its 

adjoint 
*P satisfies 

*

0, u ,   u  .P u  
 

Proof.  It is easy to see that P  is a linear operator 

from  2 ,  l  to . For all  2 ,  l , a 

simple calculation gives 

 
 2 , 

0
l

P    
,
 

which implies that P  is bounded. Now let u  

be given. Then, for all  2 ,  l  , we have 

 
 

   
 

2

2 , 

*

, 

0, u 0, u

, ,P = ,  0

,  ,  .
l

l

x

P u u u

x x


   

       

which means 
*

0, uP u  . Finally, for all u  , by 

using the above property of 
*P as well as properties

 *

0, u 0, u 0 ,PP u P u     of 
0, u , we find 

 *

0, u 0, u 0 ,PP u P u   
 

which implies 
*PP I , namely P is a coisometry 

from  2 ,  l  to . 

As is mentioned above, if A  is a bounded oper-

ator on , then we conventionally use 1A  to 

mean A I . 

Proposition 3.3. Let 0k  be a nonnegative integer 

and write  *2 1k kW U P P  . Then kW  is a uni-

tary operator on  2 ,  l  . 

Proof. Since kU  is a unitary operator, it suffices to 

show that 
*2 1P P   is unitary. In fact, by the prop-

erty 
*PP I , we have 

 
2

* * * * * *2 1 4 4 1 4 4 1 1,P P P PP P P P P P P P       

which together with  
*

* *2 1 2 1P P P P  
 

im-

plies that 
*2 1P P   is unitary. Here 1 means the 

identity operator on . 

In what follows, we focus on analyzing the unitary 

operators  | 0nW n   from a perspective of the 

spectral theory. For brevity, we always assume that 

0k   is a fixed nonnegative integer. Recall that 

*

kT PUP , which is called the discriminant of 
kW . 

The next proposition shows that it is actually a null 

operator on  . 

Theorem 3.4. It holds true that 0kT  . In particular, 

     0k p kT T   . 

Proof. Let u be given. Then, 
*

0, uP u  , which 

together with Proposition 3.2 and Lemma 3.1 gives 

     
0, u 0, u 0, u

* *0 1 1 0.k k k k kT u PU P u P U   
        
 

Here properties of the function 
0, u  is used. Thus, 

0kT   as an operator on , which
 
naturally implies 

     0k p kT T   . 

The next theorem is our main result, which gives 

the spectrum and point spectrum of the unitary operator 

kW . 

Theorem 3.5. The operator 
kW

 
has a spectrum and 

point spectrum of the following form 

         ,  1 1
M M

k p kW W i i        
. 

where  dim ker ker 1kM P U      and 
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 1
M

 
that 1  is the eigenvalue of multiplicity 

M  .  And moreover, one has 

    .dimker ,       dim ker 1k kW i W M    

Proof. Recall that  *2 1k kW U P P  and 

*  ,kT PUP  where, by Lemma 3.1, 
kU

 
is a uni-

tary involution and, by Proposition 3.2, P  is a coi-

sometry. 

Hence, using Lemma 2.1, we have 

        1 1 1
M M

k kW T       
 

with  dim ker ker 1kM P U     
, where   

is the Joukowsky transform given by 

                 
1

2

x x
x


 . 

 This together with Theorem 3.4 as well as the equality 

    1 0 ,  -i i   gives 

              1 0 1 1 ,  1 1 .
M M M M

kW i i             

 

Similarly, we can verify  

       ,  1 1
M M

p kW i i       . Again using 

Lemma 2.1,  we have  

 
  

 

dim ker ,    ;
dim ker

dim ker 1 ,   = 1,

k

k

k

T i
W

T M

  




   
  

 

which, together with Theorem 3.4 as well as the equal-

ities   0i   and   , implies above . 
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